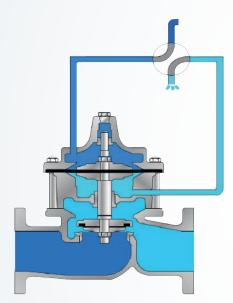
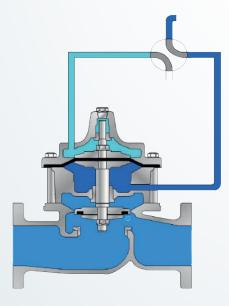

hidro conta

VALVES

HIDROMATIC VALVE


O hidroconta HIDROMATIC VALVE



Hydrodynamic design

The Hidromatic valve of Hidroconta is a piston hydraulic valve controlled with the same fluid of the conduction. Its balloon design improves its hydrodynamic characteristics, which reduces the internal turbulence of the water. Hidromatic has an gradual and slow opening and closing that eliminates the water hammer.

Water Engineering

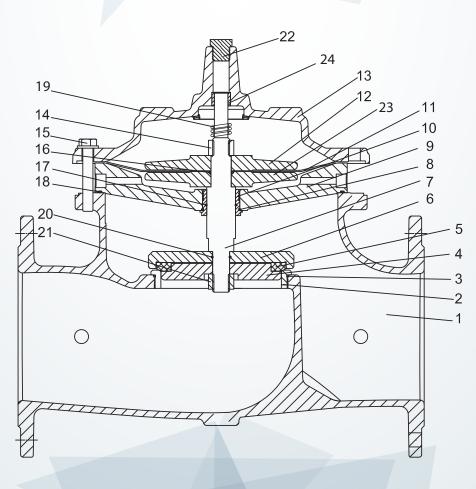
Introducing fluid into the top of the diaphragm, the diaphragm lowers the piston, so the valve will close. The opening is produced by evacuating the fluid from the chamber of the membrane. The piston will go up, and let the water will pass through the valve.

Multifunctionality

HIDROVALVE valves are essential elements in any hydraulic installation due to its multifunctionality. Reduced pressure, sustainer, limiter, relief, and multifunctional regulations are some of the possibilities of this valve.

Easy Maintenance

A simple assembly including few moving parts allows on-site maintenance without dismantling the installation, besides guaranteeing a long useful life.

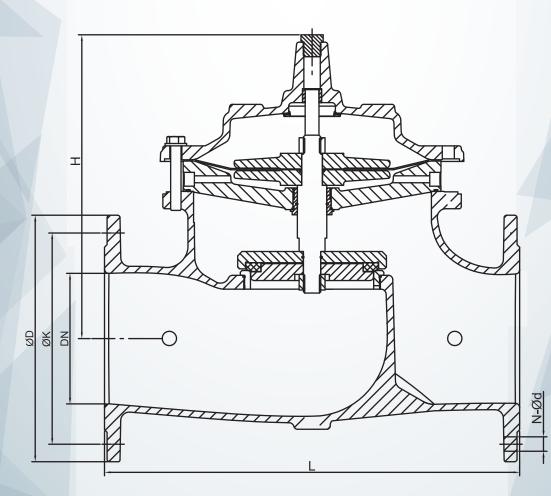


Disassembly

N٥	Description	Material
1	Body	GJS 500-7
2	Locking ring	AISI316
3	Gasket	NBR
4	Closing washer	AISI316
5	Seal	EPDM
6	Top lock washer	CS/1045
7	Axis	AISI316
8	Gasket	NBR
9	Double chamber	GJS 500-7
10	Bearing	C61900
11	Diaphragm	NBR + NYLON
12	Upper diaphragm washer	GJS 500-7

N⁰	Description	Material
13	Lid	GJS 500-7
14	Nut	A2 -70
15	Screw	A2- 70
16	Gasket	NBR
17	Gasket	NBR
18	Gasket	NBR
19	Spring	AISI
20	Gasket	NBR
21	Nut	A2 - 70
22	Connection	AISI 316
23	Membrane Bottom Washer	GJS 500-7
24	Top Shaft Guide	C61900

WHEN WATER COUNTS


Sehidroconta HIDROMATIC VALVE

20-Ø34

20-Ø37

Weight Calibre L, ØD ØΚ N- Ød Conexions Kg Inch **PN16** mm mm 4-Ø19 2″ 4-Ø19 2-1/2" 3″ 8-Ø19 4″ 8-Ø19 5″ 8-Ø19 48,5 6″ 8-Ø23 12-Ø23 FLANGED 8″ DIN 10" 12-Ø28 12-Ø28 12″ 14" 16-Ø28 16″ 16-Ø31 18″ 20-Ø28

Al rights reserved. © Copyright. 2016 HIDROCONTA. S.A.

20″

24″

WHEN WATER COUNTS

O hidroconta HIDROMATIC VALVE

Technical specifications

Calibre	Coupling	Maximum pressure	KV	сѵ
		bar	m³/h	US glm y psi
DN 50	Brida	PN16	42	49
DN 65	Brida	PN16	68	79
DN 80	Brida	PN16	95	110
DN 100	Brida	PN16	150	173
DN 125	Brida	PN16	150	173
DN 150	Brida	PN16	340	393
DN 200	Brida	PN16	620	717
DN 250	Brida	PN16	970	1121
DN 300	Brida	PN16	1300	1503
DN 350	Brida	PN16	1300	1503
DN 400	Brida	PN16	2700	3121
DN 450	Brida	PN16	2700	3121
DN 500	Brida	PN16	4200	4855
DN 600	Brida	PN16	6100	7052

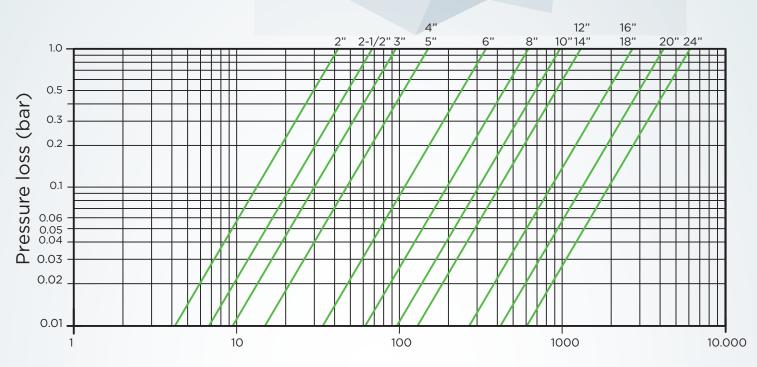
Calculation of coefficient Kv

qv
ρ
ρ٥
Δp

is the flow rate in m³ / h

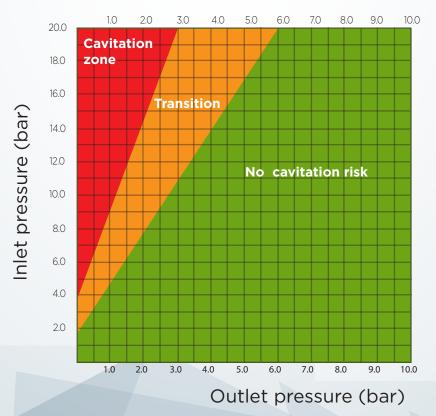
- is the density of water in kg / m^3
- is the density of water at 15 $^{\circ}$ C in kg / m³
- pv is the loss pressure of the valve in bar

 $\mathbf{K}_{\mathbf{v}} = \mathbf{q}_{\mathbf{v}} \sqrt{\frac{\mathbf{\rho}}{\Delta \mathbf{p}_{\mathbf{v}} \mathbf{\rho}_{\mathbf{0}}}}$


Al rights reserved. © Copyright. 2016 HIDROCONTA. S.A.

WHEN WATER COUNTS

• hidroconta HIDROMATIC VALVE


Pressure loss curve

Cavitation

Al rights reserved. © Copyright. 2016 HIDROCONTA. S.A.

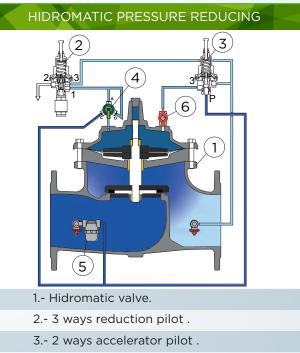
REDUCING VALVE

Used in places where pressure is needed for:

- Adjust the pressure to consumption.

- Protect instalations.

- Break the static pressure.


The pilot acts on the valve so that it has a modulating function, in order to keep the downstream pressure constant for the setting value.

The pilot sets the downstream pressure regardless the inlet pressure. If the outlet pressure is less than the preset pressure, the valve is completely open. If the upstream pressure is less than the calibrated, the pilot will open the valve, it will act just when the pressure exceeds the set pressure

Maximum reduction ratio: inlet pressure x 1/3 Precision Ratio: preset pressure ± 0.3 bar

- 4 3 ways valve.
- 5.- Filter.
- 6.- Ball valve 1/4".

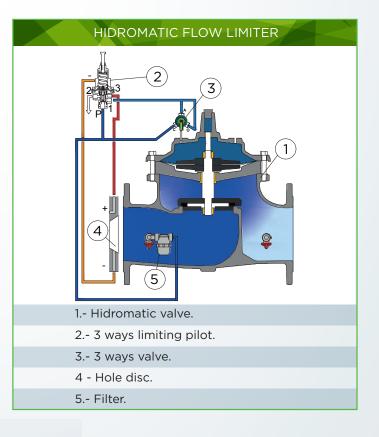
Al rights reserved. © Copyright. 2016 HIDROCONTA. S.A.

FLOW LIMITER VALVE

The installation of limited valve allow to:

- Avoid excessive consumption.

- Avoid pressure drops and therefore supply deficiencies at points away from the grid.


The flow limiting valves allow to limit the flow of circulating water, ensuring a flow equal or less than adjusted.

The pilot regulates the opening of the valve according to the differential pressure, providing the pre-set flow rate and maintaining the constant flow rate. By actuating the screw of the pilot's tare it is possible to vary the flow rate. With two sensors, installed on both sides of an orifice plate that produces a certain pressure drop, the circulating flow is obtained, closing the hydraulic valve partially until just a determined flow in case of overcome the predetermined flow.

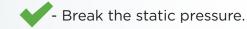
After preselecting the flow to be limited, the pilot is able to modify the flow rate set at ± 15%.

Al rights reserved. © Copyright. 2016 HIDROCONTA. S.A.

FLOW LIMITER AND PRESSURE REDUCER VALVE

The combined reducing and limiting valve performs both functions independently. It prevents:

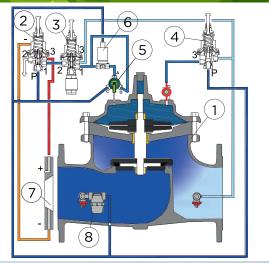
- Excessive consumption.


 Pressure drops and supply deficiencies at points away from the grid.

In addition it allows:

- Adjust the pressure to the consumption.

- Protect facilities.


Maximum reduction ratio: inlet pressure x 1/3 Accuracy: tare pressure ± 0,3 bar

After preselecting the flow to be limited, the pilot is able to modify the flow rate set at ± 15%.

Functioning

The limiting and reducing valve performs its function with a tared orifice plate installed upstream. It includes a differential pilot that regulates the opening of the valve in function of the differential pressure, proportional to the flow, maintaining the constant flow. The reducing pilot acts on the valve so that it has a modulating function in order to keep the downstream pressure constant for the set control value.

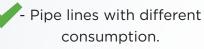
HIDROMATIC FLOW LIMITER AND PRESURE REDUCER

1.- Hidromatic valve.

- 2.- 3 ways limiting pilot.
- 3.- 3 ways reduction pilot.
- 4 2 ways accelerator pilot.
- 5.- 3 ways valve.
- 6.- Solenoid.
- 7.- Hole Disc.
- 8.- Filter.

Al rights reserved. © Copyright. 2016 HIDROCONTA. S.A.

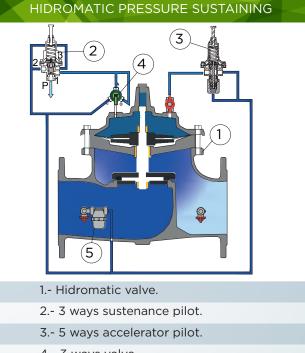
WHEN WATER COUNTS


SUSTAINING VALVE

It is used in installations where it is desired to maintain a minimum hydraulic pressure, such as:

- Pumping groups.

- Filtering equipment.


The installation of this type of valves allows to maintain a minimum pressure upstream set by the user.

The pressure holding valve is designed to maintain a minimum upstream pressure if the pressure is higher than the set value. Otherwise the valve will close until the upstream pressure is equal to or greater than the tare.

Standard working rate: from 1 bar to 6.5 bar **Precision Ratio:** preset pressure ± 0.3 bar

- 4 3 ways valve.
- 5.- Filter.

Al rights reserved. © Copyright. 2016 HIDROCONTA. S.A.

REDUCING AND SUSTAINING VALVE

The combined reducing and sustaining valve performs both functions independently. Prevents on-site generation:

- Pressure drops.

- Overpressures.

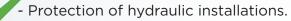
It is mainly used to automatically reduce downstream pressure in the distribution network and hold a minimum of pressure in the main high pressure line regardless of the demand for distribution.



Functioning

The reducing pilot acts on the valve so that it has a modulating function, in order to keep the downstream pressure constant for the set control value, the holding pilot acts on the valve so that it has a modulating function, in order to maintain the upstream pressure above the minimum control value.

Maximum reduction ratio: inlet pressure x 1/3 Precision Ratio: preset pressure ± 0.3 bar Standard operating ratio: 1 bar to 6.5 bar.


Al rights reserved. © Copyright. 2016 HIDROCONTA. S.A.

PRESSURE RELIEF VALVE

The relief valve is designed to open in case of exceeding a preset maximum pressure. This valve is installed with an atmospheric outlet, relieving by opening the overpressure in the pipe.

The pressure relief pilot sets the maximum tare pressure limit through a set screw. If the upstream pressure exceeds the set pressure, the valve is opened by communicating the valve chamber to the atmospheric pressure, so it relieves excess pressure in the line.

Working pressures: From 2-16 bar Precision Ratio: ± 0.5 bar

Al rights reserved. © Copyright. 2016 HIDROCONTA. S.A.

General cha	aracteristics
Valve diameter	DN / mm / inches
Valve type	membrane / piston
Maximum input pressure	bar / MPa
Fittings	plastic / metalic
Accesories	plastic / metalic
Pilots	plastic / metalic
Solenoid (Yes/Not)	latch/24VDC/24VAC/220VAC
Estado de la válvula en reposo	abierta/ cerrada

	educer valve characteristics
Output pressure	bar / MPa
Maximum flow	m ³ /h
Minimum flow	m³/h

Sustaining v	alve characteristics	
Pressure to hold	bar / MPa	
Maximum flow	m³ / h	
Minimum flow	m³ / h	
Working flow	m³ / h	
Electrovalve characteristics		
Solenoid voltage	V	
N° of wires 2/3		
Use of the valve	open / close	
Pressure relief characteristics		
Pressure relief	bar / MPa	

Al rights reserved. © Copyright. 2016 HIDROCONTA. S.A.

I AQ

1- Why does not the valve open?

There may be insufficient pressure at the inlet pressure valve, you should examine the insulation valves of the system upstream and downstream, if they are closed open to allow the passage of water and generate pressure.

Another reason may be that the solenoid is calcified, clean it and replace parts as necessary.

2- Why does not the valve regulate at the desired control point?

It may be caused by the pilot because it is not adjusted properly, check it by tightening and loosening the screwdriver to see if there is a pilot reaction, so you can adjust the pilot to the desired opening and closing speed.

Check if the upstream filter is clogged and causes insufficient pressure to reach the pilot to activate the valve at the desired control point.

3- Why does not the valve close?

It may be that the filter is clogged, to check it, disconnect the copper line from the lid to see if there is water flow in the inlet. In this case clean the filter mesh.

If the main valve membrane fails, it can also give this result, replace the membrane for repair.

Another reason may be that the solenoid is calcified, clean it and replace parts as necessary.

4- Why does the membrane leak water?

It is usually produced by the accumulation of dirt between the membrane and its closing support, closing the valve manually, if the problem persists open the valve to clean the area.

VÁLVULA HIDROMATIC

WHEN WATER COUNTS CUANDO EL AGUA ES LO QUE CUENTA

www.hidroconta.com

Ctra. Sta Catalina, 60 Murcia (30012) España

T: +34 968 26 77 88 F: +34 968 34 11 49

hidroconta@hidroconta.com

