hinrnconta

WHEN WATER COUNTS

water meter hidrnJet

hintroconta
WHEN WATER COUNTS

hidrnJet

Convertible into a Smart meter

High accuracy
R80H
re-equipped for pulse emitter

Installation
UO/DO

Hydrodynamic design

The multi-jet technology ensures uniform load distribution over the turbine thanks to the diffuser located at the water inlet. The movement activates the magnetic transmission which will give the final volume reading.

EMEÑE approval

Thanks to the acquired homologation, the low maintenance requirements and the low pressure losses, this product is suitable for the totalisation of water in hydraulic networks for irrigation and public water use.

Technical specifications

\checkmark - Turbine and dial in thermoplastic material.
\checkmark - Clockwork assembly under vacuum to prevent water condensation.
\checkmark-Magnetic transmission protected against external magnetic fields.
\checkmark - Pre-equipped with pulse emitter for remote reading. Quick connection without stopping or disassembling the water meter.
\checkmark - High mechanical and wear resistance.
\checkmark - Accuracy ratio R80 in horizontal and R40 in vertical position.
\checkmark - No need straight sections at the inlet or outlet of the water meter.

hinmeonta

WHEN WATER COUNTS

Pre-equipped

The dial of the water meter has a preinstallation that allows the installation of a pulse emitter, without the need to stop the water meter, this will give information about the reading.

High protection

Hidroconta's Hidrojet water meters are designed to avoid external manipulation by magnetic fields. They have a special shielding that covers the dial, which prevents any possible fraud in the transmission and therefore in the result of the reading.

Dial

\square

Manufacturer's

Emeñe approval for use of public water domain

Permanent flow rate

hidrnconta

WHEN WATER COUNTS

Disassembly

hidrnJet

Dimensions

Packing

DIAMETER		$\begin{aligned} & \text { PCS. PER } \\ & \text { BOX } \end{aligned}$	DIMENSIONS PER BOX (CM)			GROSS WEIGHT (cast iron water meter)	GROSS WEIGHT (composite water meter)
mm	in		Length	Width	Height		Kg
15	1/2"	1	20	10	13,5	1,35	0,62
		10	50	22	29	13,00	-
20	3/4"	1	20	10	13,5	1,49	0,72
		10	50	22	29	15,00	6,50
25	1"	1	27	14	13	2,64	1,02
		5	71	30	14	13,50	5,60
32	1-1/4"	1	27,5	14,5	12,5	3,03	1,14
		5	71	30	14,5	14,5	5,60
40	1-1/2"	1	31,5	19,5	13,5	5,45	1,76
		2	33	22	30,5	11,20	3,80
50	2"	1	31,5	20	14	6,93	-
		2	33	22	30,5	13,50	-

Working conditions

WATER TEMPERATURE RANGE

	≤ 16 bar	For cast iron body
$0,1{ }^{\circ} \mathrm{C}-30{ }^{\circ} \mathrm{C}$	≤ 10 bar	For composite body

Maximum permissible error
ERROR (\%)
$\pm 5 \%$
$\pm 2 \%$

Technical specifications

CALIBRE		Q_{4}	Q_{3}	Q_{2}	Q_{1}	MINIMUM READING	MAXIMUM READING	RATIO
mm	in		$\mathrm{m}^{3} / \mathrm{h}$			m^{3}		
15	1/2"	3,12	2,50	$\begin{gathered} 0,05 \\ 0,10 \end{gathered}$	$\begin{aligned} & 0,03 \\ & 0,06 \end{aligned}$	0,05	99.999	$\begin{aligned} & \mathrm{R} 80 \mathrm{H} \\ & \mathrm{R} 40 \mathrm{~V} \end{aligned}$
20	3/4"	5,00	4,00	$\begin{gathered} 0,08 \\ 0,16 \end{gathered}$	$\begin{aligned} & 0,05 \\ & 0,10 \end{aligned}$	0,05	99.999	$\begin{aligned} & \mathrm{R} 80 \mathrm{H} \\ & \mathrm{R} 40 \mathrm{~V} \end{aligned}$
25	1"	7,87	6,30	$\begin{aligned} & 0,13 \\ & 0,25 \end{aligned}$	$\begin{gathered} 0,08 \\ 0,16 \end{gathered}$	0,05	99.999	$\begin{aligned} & \mathrm{R} 80 \mathrm{H} \\ & \mathrm{R} 40 \mathrm{~V} \end{aligned}$
32	1-1/4"	12,50	10,00	$\begin{aligned} & 0,20 \\ & 0,40 \end{aligned}$	$\begin{aligned} & 0,13 \\ & 0,25 \end{aligned}$	0,05	99.999	$\begin{aligned} & \mathrm{R} 80 \mathrm{H} \\ & \mathrm{R} 40 \mathrm{~V} \end{aligned}$
40	1-1/2"	20,00	16,00	$\begin{aligned} & 0,32 \\ & 0,64 \end{aligned}$	$\begin{aligned} & 0,20 \\ & 0,40 \end{aligned}$	0,05	99.999	$\begin{aligned} & \mathrm{R} 80 \mathrm{H} \\ & \mathrm{R} 40 \mathrm{~V} \end{aligned}$
50	2"	31,25	25,00	$\begin{aligned} & 0,50 \\ & 1,00 \end{aligned}$	$\begin{aligned} & 0,31 \\ & 0,63 \end{aligned}$	0,05	99.999	$\begin{aligned} & \mathrm{R} 80 \mathrm{H} \\ & \mathrm{R} 40 \mathrm{~V} \end{aligned}$

Pressure loss curve

Flow error curve

Pulse output

REED SENSOR

Pulse value	1 pulse 100L
Minimum current for contact closure	0 mA
Maximum contact closing current	100 mA
Contact closed resistance	$<1 \Omega$
Open contact resistance	$\sim \infty$
Max. withstand voltage	24 V
Max. contact stabilisation time	100 us
Contact closed contact duration	40% of cycle
Standard cable length	$1,5 \mathrm{~m}$

Installation diagrams

Installation instructions

It is recommended to always place the water meter at a low point in the installation.

Position the water meter so that the arrow corresponds to the direction of water flow.

Do not force the water meter during installation, avoid tensile and torsional stresses.

Water meters must always be filled with water. A minimum pressure of 0.3 bar is recommended at the outlet of the water meter to ensure that it is filled with water. Install at a lower level concerning the slope of the rest of the pipe, this will also eliminate the formation of bubbles inside the pipe.

If air is present in the pipe, it is necessary to install air release valves to avoid erroneous readings.
If the water in the pipe has coarse particles in suspension, it is recommended to install a roughing filter beforehand.

Provide a shut-off valve upstream of the water meter to facilitate maintenance and/or repair.

Before installing a water meter in a new pipe, it is recommended to empty the pipe to remove particles.

The inside diameter of the pipe should be equal to the nominal diameter of the water meter.

It is not necessary to install straight sections before or after the water meter UO-DO.

Suitable for installation in horizontal position R8OH and vertical position R40V.

Automatic meter reading

Adding the IRIS communications module to the water meter will enable automatic remote readings. IRIS devices allow mechanical meters to access the world of IOT communications. Its great versatility allows it to be integrated with a wide range of meters.

The IRIS communications module is integrated with the Demeter system. It supports the integration of a wide range of devices using various communication technologies to suit the needs of the installation.

Modulation	CSS	CSS
Frequency	Banda ISM EU868*	Banda ISM US915, AU915, AS923**/***
Power	14 dBm	20 dBm
Sensitivity	168 dBm	168 dBm
Bandwidth	125 kHz	125 kHz
LoRaWAN Configuration	YF12	SF12
Bidirectional	Yes/Half-duplex	Yes/Half-du- plex
Encryption	AES128	

罂NB-IoT	
Bands	LTE NB2/B1/B2/B3/B4/B5/B8/ B12/B13/B17/B18/B19/ B2O/B25/ B28/B66/ B70/B85
Transmission power	$23 \mathrm{dBm}+/-2 \mathrm{~dB}$
Firmware Update	Via FOTA
	M-Bus
	868 MHz
	OMS T1 y C1

Alarms

Reverse flow alarm:

Reverse flow detection. Only available for the inductive pulse version. Configuration adjusted by communications.

' Leakage alarm:

Detection of continuous consumption for a maximum period of time. Configuration adjusted by communications

Water meter stopped alarm:

The alarm is activated if no consumption is detected for a maximum period of time. Configuration adjusted by communications.

Under-dimensioned water meter alarm:

Detection of flow rate higher than the overload flow rate for a maximum period of time. Configuration adjusted by communications.

Water meter tampering alarm (tampering):

The alarm is triggered in case the device is not mounted on the meter. Only available for the inductive pulse version.

s Battery status alarm:

Various battery alarm levels are activated depending on the remaining battery life.

Functionality

Operating profiles based on the recording consumption and communications records requirements:

> Normal-24: Sending data every 24 hours and recording every hour.
> Normal-8: Sending data every 8 hours and recording every hour.
> Medium: Sending data every 12 hours and recording every 30 minutes.
> Extreme: Sending data every 6 hours and recording every 15 minutes.

MODE	AUTONOMY	COMUNICATION	DATA HISTORY RECORD
Normal -24	12 years	24 h	1 h
Normal -8	TBD	8 h	1 h
Medium	TBD	12 h	30 min
Extreme	TBD	6 h	15 min

[^0]
FAQs

1. Which is the diference between dry dial, wet dial and semi-dry water meter dial?

On water meters with dry dial the reading mechanism (clock) is tightly separated from the wet chamber of the meter.

On Wet dial water meter the watch is totally immersed in the fluid.

For water meters with semi-dry dial, the reading mechanism is totally immersed in the fluid but the dial is partially separated and protected by a sealed capsule.

2. What are the ranges of measurement and precision?

The measuring range of the meters is determined by the Directive MID 2014/32 / UE establishing the ratio between the value of the permanent flow (Q3) and that of the minimum flow (Q1). The water meter can measure up to the maximum flow rate (Q4) for short periods of time without deterioration.

The maximum permissible error, positive or negative, in volumes between the transition flow (Q2) (included) and the overload flow (Q4) would be 2% with a water temperature $30^{\circ} \mathrm{C}$.

The maximum permissible error, positive or negative, in volumes between the minimum flow rate (Q1) and the transition flow (Q2) (excluded) would be 5%.

3. The MID directive and its compliance

The MID Directive (2014/32 / EU Measuring Instruments Directive) is a directive of the European Union whose purpose is to harmonize the diferent aspects of Legal Metrology in the member states.

The most important aspect of this directive is that equipment in possession of a MID certificate can be used in the EU

hinrnconta

WHEN WATER COUNTS

water meter hinrnuet

[^0]: * TBD (to be determined). 24 maximum storage and sending readings: each sending allows accumulating up to 24 values for each communication interval.

